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Multifractal phenomenology and the refined similarity hypothesis in turbulence
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Within the framework of multifractal models of turbulence, regarding velocity increments and
locally averaged energy dissipation together with their extension to the dissipation range, the fol-
lowing is shown. (1) If the one-dimensional surrogate for energy dissipation is correct, then the
Kolmogorov-Oboukhov refined similarity hypothesis follows as a consistency condition between the
two frameworks. (2) Validity of the one-dimensional surrogate is discussed under an added assump-
tion that the higher-order moments of lateral and longitudinal derivatives have identical scaling.
The two scaling exponents can be related in the form of an inequality for the full three-dimensional

energy dissipation.

PACS number(s): 47.27.Gs

The multifractal framework [1,2] is one of the general
descriptions of intermittency in turbulence. In turbu-
lence, two kinds of multifractality are expected. One is
the f(a) — D(q) formalism [3,4] which deals with ¢,; en-
ergy dissipation locally averaged over scale r. The other,
d(h) — {p, formalism [1] refers to (longitudinal) velocity
difference du(r) between two points separated by distance
r.

The refined similarity hypothesis [5] proposed by Kol-
mogorov and Oboukhov connects statistics of ¢, with
that of du(r). This hypothesis has some support from
numerical [6] and laboratory [7] experiments.

In this paper, we show how the refined similarity hy-
pothesis follows as a consistency condition from the mul-
tifractality of turbulence with their extension to the dis-
sipation range. We first employ the one-dimensional sur-
rogate for energy dissipation. The case of the full three-
dimensional dissipation is also discussed briefly.

We recapitulate the standard formalisms of multifrac-
tality in turbulence beginning with velocity increments
[1]. For r in the inertial subrange, let d(h) be the fractal
dimension of the set where the velocity difference du(r)
with separation r behaves as du(r) oc r*. We assume
that

([u(r)P) ~ ré,

where the angle brackets denote a spatial average and ¢,
is the scaling exponent.

For the energy dissipation averaged over size r, we as-
sume that

((€r)9) ~ rla~DIP@)—-A]
where D(g) is the generalized dimension and A is the

spatial dimension (now A = 1; it will be taken as 3 later).
To relate two formalisms we consider pth-order mo-
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ments of pointwise energy dissipation. First we assume
that the one-dimensional surrogate for energy dissipation

ww=v (2.

By extrapolating » down to a viscous scale (the so-
called argument of intermediate dissipation range [8-10]),
we have, in the d(h) formalism (8],

(&)

~ R;6P+2[4P—A+d(h)]/(1+h)’ (1)

where h is determined from
tp— A =d(R)(h+1)-d(h), (2)

and Ry ~ v~1/2 is the microscale Reynolds number. On
the other hand, we have, in the f(a) formalism by a
similar extrapolation [11],

(e(2)?) ~ lim ((e-)?) ~ BR3P, (3)

where q is determined from

(g—1)(D(q) —A)=4(p—9). (4)

For the two kinds of multifractality to be consistent,
Egs. (1) and (3) should be equal. By equating the cor-
responding exponents, we obtain after a simplification

4p — A = 3q(1 + k) — d(h). (5)
Comparing with (2) we find d'(h) = 3q.

In general, d(k) can be retrieved from (, through the
Legendre inverse transform
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d(h) =p% —G+A,
P (6)
h = %
dp ’

Setting p = 3¢ in (6) and inserting the results into (5) we
find

4p = 3q + (34 (7)
and it follows from (4) that
(¢—-1)[D(g) — A] = (3 — ¢-
Writing p for 3q we arrive at
- p_ p
Cﬁ"l+(3 I)D(3%

for A = 1. This is the well-known expression equivalent
to

‘l.l,’l'3
~ 2 ®)

T

€r

where r is in the inertial subrange. Here = implies that
the moments of both sides at any positive order have
the same scaling exponents [3,12,13]. Thus the refined
similarity hypothesis in the whole inertial range follows
as a consistency condition between the two frameworks
of multifractal phenomenology and their extension to the
dissipation range.

Next, we discuss the more general case of full three-
dimensional energy dissipation by considering the valid-
ity of the one-dimensional surrogate. For simplicity we
treat the case of the periodic boundary condition. It is
necessary to relate statistics of longitudinal velocity dif-
ferences with that of lateral ones. In addition to the
isotropy assumption, here we assume for p > 1 that

2p 2p
<(9"—) >=A<(ai) > )
3m1 a(L'z
where A,’s are constants independent of the Reynolds
number. This relation seems plausible, but (from
isotropy and incompressibility) it can be derived rigor-
ously only for the case of p =1, A; = 1/2 [14].
By the definition

3 2
v Ou; Ou;
6(:1:) - 5 Z (8$J + 81'1)

i,j=1

each term in (¢(z)P) in general has the form

Ou; Ouy, My,
P Tk
v <8z]~ oz, oz, > ’ (10)
N, ——
2p

where i, j,...,m,n are arbitrary indices.
Now, consider Holder’s inequality [15];

(fifa - FlYE < (AP flPe) P
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where

1 1 1 1
S=— =4+ — <L

q D1 D2 Dk

Setting ¢ = 1, £k = 2p, and p1 = p; = -+ = pr = 2p,
we see that the term in angle brackets in (10) is bounded
from above by

ou; \ * Y2 Oui \ ?* 1w

i k

((52)") {G)7)

X Oum Zp 1/ZP<B @_l i
3:1;,, =P 62!1 ’

where the last line follows from isotropy and the as-
sumption (9) and B,’s are constants independent of the
Reynolds number. Therefore we have

(e(@)?) < 7B, <(g%)> .

By the same argument as above we find in this case

625+ (G- [p(5)-a.

for A = 3. Therefore for the general energy dissipation
the two scaling exponents can be related in the form of
an inequality with the assumption (9).

Needless to mention, the present remark neither sub-
stantiates multifractality nor the refined similarity hy-
pothesis but it describes the relationship between them.
In most laboratory experiments such as [3] the refined
similarity hypothesis is assumed together with a one-
dimensional surrogate for energy dissipation (and with
Taylor’s hypothesis). This note lends support for such a
consistent interpretation of experimental data in terms
of multifractality, although it seems difficult to obtain a
solid experimental verification of multifractality.

At present there is no theoretical foundation for the ve-
locity field to exhibit multifractality and the multifractal
phenomenology of turbulence has even been challenged
in [16]. In understanding intermittency of turbulence,
it would be worthwhile to extract some information re-
garding the refined similarity hypothesis by analyzing the
equations of motion.
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